Continuity and Differentiability

Multiple Choice Questions

Q: 1 The function f : R -> R is defined by:

 $f(x) = \begin{cases} |\sin x|, \text{ when } x \text{ is rational} \\ -|\sin x|, \text{ when } x \text{ is irrational} \end{cases}$

Read the statements carefully and then choose the option that correctly describes them.

Statement 1 : f(x) is continuous at x = 0.

Statement 2 : f(x) is discontinuous for all $x \in \mathbb{R} - \{0\}$.

1 Statement 1 is true but Statement 2 is false.

- **2** Statement 1 is false but Statement 2 is true.
- **3** Both Statement 1 and Statement 2 are true.
- 4 Both Statement 1 and Statement 2 are false.
- **Q:** 2 The Signum function $f : \mathbb{R} \to \mathbb{R}$, defined below, is discontinuous at x = 0. The identity function $g : \mathbb{R} \to \mathbb{R}$, defined below, is continuous everywhere.

$$f(x) = \begin{cases} 1, \text{ for } x > 0\\ 0, \text{ for } x = 0\\ -1, \text{ for } x < 0 \end{cases}$$
$$q(x) = x, \text{ for all } x \in \mathbb{R}$$

Which of these is true about the product of two functions (f.g)?

1 (f.g) is discontinuous at x = 0 but continuous elsewhere in R.

- **2** (f.g) is not differentiable anywhere in R.
- **3** (f.g) is differentiable everywhere in R.
- 4 (f.g) is continuous everywhere in R.

Q: 3 Read the statements carefully and choose the option that correctly describes them.

Statement 1: The function $\sqrt{x-5}$ is continuous in (5, ∞).

Statement 1: The function $\sqrt{x-5}$ is differentiable in (5, ∞).

1 Both statements are true and statement 2 explains why statement 1 is true.

2 Both statements are true but statement 2 does NOT explain why statement 1 is true.

CLICK HERE

🕀 www.studentbro.in

3 Statement 1 is true but statement 2 is false.

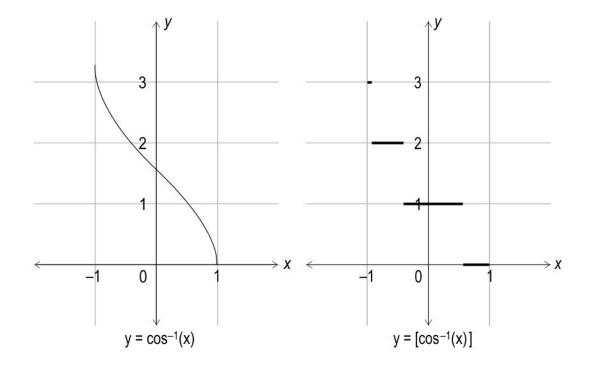
4 Statement 1 is false but statement 2 is true.

Q: 4 Look at an inverse function below.

 $y = cosec^{-1} (4 x^4); |4 x^4| > 1$

Find $\frac{dy}{dx}$. Show your steps.

Q: 5 Shown below are the graphs of two functions $y = \cos^{-1} x$ and $y = [\cos^{-1} x]$, where [2] [cos⁻¹ x] denotes the greatest integer function.



Find the points of discontinuity of the function $y = [\cos^{-1} x]$. Show your work.

$$\underline{\mathbf{Q:6}} \text{ If } y = ax^{n+2} + \frac{b}{x^{n+1}} \text{, where } n \in \mathbb{N} \text{ and } a, b \in \mathbb{R},$$
[3]

prove that $x^2y'' = (n + 1)(n + 2)y$.

Q: 7 Find the value of (f o g)' at x = 4 if f (u) = $u^3 + 1$ and $u = g(x) = \sqrt{x}$. Show your [3] work.

CLICK HERE

≫

$$\frac{\mathbf{8}}{f(x)} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^{10}}{10!}$$

If f(x) is differentiated successively 10 times, what is $f^{(10)}(x)$? Show your work.

$$\frac{\mathbf{Q:9}}{1-20\log x} \text{ Find } \frac{d^2y}{dx^2} \text{ if, } y = \tan^{-1} \left[\frac{\log\left(\frac{e}{x^5}\right)}{\log\left(ex^5\right)} \right] + \tan^{-1} \left[\frac{4+5\log x}{1-20\log x} \right].$$
[5]

Show your work.

(Note : Consider the base of logarithm to be e.)

Q: 10 Find $\frac{dm}{dn}$ at (*m*,*n*) = (-1, 1) where:

$$5m^2 + 2m - n^{\frac{-2}{3}} = 0$$

Show your work.

Case Study

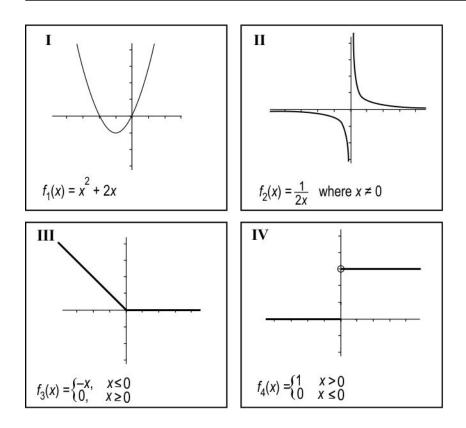
Answer the questions based on the information given below.

Ambika, a mathematics teacher is conducting a practice session on calculus where she is discussing continuity and differentiability of several functions in their domains. Shown below are four cards that contain a function each along with their domains and graphs.

Get More Learning Materials Here :

[5]

[5]



While discussing in the group, four students claimed as follows:

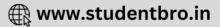
◆ Leela: "As the function on card I is both continuous and differentiable, we can say that every continuous function is differentiable."

- ♦ Irfan: "As the graph is not in one piece, the function on card II is discontinuous."
- Deepak: "The function on card III is continuous."
- Kiran: "The function on card IV is discontinuous."

Q: 11 Check whether Deepak and Kiran's claims are correct. Justify your answer.	[2]
Q: 12 Is Irfan's claim correct? Does the reason given by him support his claim? Justify.	[1]
Q: 13 Is Leela's claim true for all continuous functions? Justify with a valid reason or provide a counterexample.	[2]

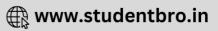
The table below gives the correct answer for each multiple-choice question in this test.

Q.No	Correct Answers
1	4
2	4
3	1



Q.No	What to look for	Marks
4	Differentiates the given function as:	0.5
	$\frac{dy}{dx} = \frac{-1}{4x^4 \sqrt{(4x^4)^2 - 1}} \frac{d(4x^4)}{dx}$	
	Simplifies the above equation as:	0.5
	$\frac{dy}{dx} = \frac{-16x^3}{4x^4\sqrt{(4x^4)^2 - 1}} = \frac{-4}{x\sqrt{16x^8 - 1}}$	
5	With the help of the graphs, finds the values of x for which $\cos^{-1} x$ attains integer values as:	1.5
	$\cos^{-1} x = 3$	
	=> x = cos 3	
	$\cos^{-1} x = 2$ => x = cos 2	
	$\cos^{-1} x = 1$ => x = cos 1	
	Concludes that the points of discontinuity of the function $y = [\cos^{-1} x]$ are cos 3, cos 2 and cos 1.	0.5
6	Finds the first derivative of y as:	1
	$y' = a(n+2)x^{n+1} - b(n+1)x^{-n-2}$	
	Finds the second derivative of y as:	1
	$y'' = a(n+2)(n+1)x^n + b(n+1)(n+2)x^{-n-3}$	

Q.No	What to look for	Marks
	Multiplies x^2 on both sides of the above equation to get:	1
	$x^{2}y'' = (n+1)(n+2)\left[ax^{n+2} + \frac{b}{x^{n+1}}\right]$	
	$\Rightarrow x^2 y'' = (n+1)(n+2)y$	
7	Finds ($f \circ g$)(x) as:	1
	$(f \circ g)(x)$	
	= f(g(x))	
	$= f(\sqrt{x})$	
	$= (\sqrt{x})^3 + 1$	
	$=x^{\frac{3}{2}}+1$	
	Finds the derivative of ($f \circ g$)(x) as:	1
	$\frac{d}{dx}(f \circ g)(x)$	
	$\frac{d}{dx}(f \circ g)(x)$ $= \frac{d}{dx}(x^{\frac{3}{2}} + 1)$	
	$=\frac{3}{2}x^{\frac{1}{2}}$	
	Uses the above step to find the value of ($f \circ g$)' at $x = 4$ as 3.	1



.No	What to look for	Marks
8	Differentiates f (x) once to get:	1
	$f^{(1)}(x) = 0 + 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^9}{9!}$	
	Rewrites f ⁽¹⁾ (x) as:	0.5
	$f^{(1)}(x) = f(x) - \frac{x^{10}}{10!}$	
	Finds the second derivative of <i>f</i> (<i>x</i>) as:	1
	$f^{(2)}(x) = f(x) - \frac{x^{10}}{10!} - \frac{x^9}{9!}$	
	Finds the third derivative of <i>f</i> (<i>x</i>) as:	1
	$f^{(3)}(x) = f(x) - \frac{x^{10}}{10!} - \frac{x^9}{9!} - \frac{x^8}{8!}$	
	Generalises the pattern as:	1
	$f^{(10)}(x) = f(x) - \frac{x^{10}}{10!} - \frac{x^9}{9!} - \dots - \frac{x^2}{2!} - x$	
	(Award full marks if the expression is correctly generalised at the second derivative stage.)	

Q.No	What to look for	Marks
	Finds the value of $f^{(10)}(x)$ as $f^{(10)} = 1$.	0.5
9	Simplifies log ($\frac{e}{x^5}$) as 1 – 5log x.	0.5
	Simplifies log (ex^5) as 1 + 5log x.	0.5
	Rewrites the given equation as:	0.5
	$y = \tan^{-1} \left[\frac{1 - 5 \log x}{1 + 5 \log x} \right] + \tan^{-1} \left[\frac{4 + 5 \log x}{1 - 20 \log x} \right]$	
	Uses the trigonometric identities $\tan^{-1} A - \tan^{-1} B = \tan^{-1} \frac{A-B}{A+B}$ and $\tan^{-1} A + \tan^{-1} B = \tan^{-1} \frac{A+B}{1-AB}$ and rewrites the above equation as:	2
	y = tan ⁻¹ 1 - tan ⁻¹ (5 log x) + tan ⁻¹ 4 + tan ⁻¹ (5 log x)	
	Simplifies above step to get:	0.5
	y = tan ⁻¹ 1 + tan ⁻¹ 4	
	Differentiates the above equation to get $y' = 0$.	0.5
	Differentiates y' to get $y'' = 0$.	0.5
10	Differentiates the equation given in the question with respect to <i>n</i> as follows:	1
	$\frac{d}{dn}\left(5m^2+2m-n^{\frac{-2}{3}}\right)=\frac{d}{dn}(0)$	
	$\Rightarrow \frac{d}{dn} \left(5m^2 \right) + \frac{d}{dn} \left(2m \right) - \frac{d}{dn} \left(n^{\frac{-2}{3}} \right) = 0$	
	Simplifies the differentiation in the previous step as follows:	1
	$\frac{d}{dm}\left(5m^2\right)\frac{dm}{dn}+2\frac{dm}{dn}+\frac{2}{3}n^{\frac{-5}{3}}=0$	

r www.studentbro.in

Q.No	What to look for	Marks
	Simplifies the previous step as:	1
	$\frac{dm}{dn}(10m+2) + \frac{2}{3}n^{\frac{-5}{3}} = 0$	
	(Award full marks if equivalent solving techniques without some intermediate steps are followed.)	
	Concludes that:	1
	$\frac{dm}{dn} = -\frac{n^{\frac{-5}{3}}}{15m+3}$	
	Finds the value of $\frac{dm}{dn}$ at (-1,1) as $\frac{1}{12}$.	1
11	Writes that Deepak is right and justifies it as follows:	1.5
	As $f_{3}(x)$ satisfies all the 3 conditions given below, it is continuous.	
	 f₃(x) is defined for all real numbers. At x = 0, left hand limit = right hand limit = 0 f(0) = 0 	
	Writes that Kiran is right and justifies it as follows:	0.5
	As f_4 (x) fails to satisfy that at $x = 0$, left hand limit (0) is not equal to the right hand limit (1), it is discontinuous.	
12	Writes that the claim made by Irfan is wrong and the reason given by him does not support his claim.	0.5
	Justifies that when $x = 0$, the function is not defined. So, $\frac{1}{2x}$ is continuous at all points except when $x = 0$. Hence, writes that the reason given by Irfan is not correct.	0.5
13	Writes that Leela's claim is not true for all continuous functions.	0.5

Q.No	What to look for	Marks
	Gives an example. Foe example: f_3 (x) is continuous, but not differentiable as it it has a corner point.	1.5
	(Award full marks if any other valid examples are given.)	

